未來(lái)并未真正到來(lái),卻又似乎正加速到來(lái)。ChatGPT的熱潮最重要的現(xiàn)實(shí)意義可能恰在于,它激發(fā)了整個(gè)人類(lèi)對(duì)AI(人工智能)的深度思考和高度警覺(jué)。我們認(rèn)為,AI技術(shù)發(fā)展將從微觀、宏觀和歷史三個(gè)層面,對(duì)人類(lèi)經(jīng)濟(jì)社會(huì)產(chǎn)生深遠(yuǎn)影響。
(資料圖片僅供參考)
微觀層面,大語(yǔ)言類(lèi)模型的通用性和泛化能力,將刺激未來(lái)5~10年AI系統(tǒng)不斷與移動(dòng)設(shè)備、音頻、圖像、視頻等行業(yè)領(lǐng)域加速融合,更大規(guī)模的數(shù)據(jù)、更好的算法、更快的訓(xùn)練將為經(jīng)濟(jì)活動(dòng)創(chuàng)造更有價(jià)值的商業(yè)工具。
宏觀層面,AI技術(shù)對(duì)現(xiàn)實(shí)經(jīng)濟(jì)活動(dòng)的影響仍存在一定滯后性(“生產(chǎn)力悖論”),這使得現(xiàn)有的經(jīng)濟(jì)增長(zhǎng)模型很難全面反映AI或者數(shù)據(jù)要素創(chuàng)新對(duì)經(jīng)濟(jì)潛在增長(zhǎng)的復(fù)雜影響,而隨著AI的泛化能力和對(duì)目標(biāo)理解的不確定性不斷強(qiáng)化,AI技術(shù)創(chuàng)新對(duì)商業(yè)價(jià)值的釋放將變得更加不可預(yù)測(cè),這將導(dǎo)致經(jīng)濟(jì)增長(zhǎng)的不連續(xù)變化成為常態(tài)。
歷史層面,對(duì)大語(yǔ)言類(lèi)模型引領(lǐng)未來(lái)AI發(fā)展不宜過(guò)于樂(lè)觀,畢竟大語(yǔ)言類(lèi)模型結(jié)合強(qiáng)化學(xué)習(xí)并非真正的智能,真正的人工智能需要具備判斷常識(shí)和自我推理能力。正如OpenAI自己所講:“ChatGPT不是真正的智能,但它讓人們體驗(yàn)到了真正智能實(shí)現(xiàn)后,每個(gè)人都能通過(guò)智能實(shí)現(xiàn)他們目標(biāo)的滋味?!?/p>
微觀層面:AI技術(shù)的不斷演繹與迭代或?qū)?lái)新一輪應(yīng)用創(chuàng)新
近20年來(lái),人工智能技術(shù)的發(fā)展基本分為三個(gè)階段。第一個(gè)階段是2015年以前,人們對(duì)AI模型的設(shè)計(jì)和應(yīng)用強(qiáng)調(diào)“解構(gòu)化”,即通過(guò)不同的小型模型理解人類(lèi)語(yǔ)言并分析不同情景中的工作任務(wù)。通常這類(lèi)模型基于“監(jiān)督式學(xué)習(xí)”并用于工業(yè)制造業(yè)、交通貨運(yùn)、欺詐分類(lèi)等特殊場(chǎng)景中。然而,這類(lèi)小型模型距離大規(guī)模通用性仍有很遙遠(yuǎn)的距離。
2015年之后,Google Research 的里程碑式論文“Attention is All You Need(注意力就是你所需要的一切)”介紹了一種新的用于自然語(yǔ)言理解的神經(jīng)網(wǎng)絡(luò)模型(Transformers)。這類(lèi)模型通過(guò)“無(wú)監(jiān)督式模型”可以以更少的訓(xùn)練時(shí)間生成更高質(zhì)量的語(yǔ)言模型。Google進(jìn)一步把這些模型開(kāi)始具有目標(biāo)性地應(yīng)用于不同的特定領(lǐng)域中。
2015~2021年以來(lái),隨著這些模型訓(xùn)練數(shù)據(jù)的量級(jí)不斷增加,模型生成的精準(zhǔn)度不斷上升。結(jié)合AI科學(xué)家將強(qiáng)化學(xué)習(xí)模型納入到神經(jīng)網(wǎng)絡(luò)模型中加強(qiáng)了機(jī)器人的記憶力,這使得AI對(duì)文字、音樂(lè)、繪畫(huà)、語(yǔ)音、圖像、視頻等領(lǐng)域的理解逐漸超過(guò)了人類(lèi)平均水平。ChatGPT正是在這樣的背景下實(shí)現(xiàn)了從量變到質(zhì)變的跨越。我們認(rèn)為,ChatGPT等人工智能技術(shù)可以幫助人類(lèi)實(shí)現(xiàn)更多的數(shù)據(jù)要素創(chuàng)新,從而改變和豐富消費(fèi)者行為。
具體來(lái)說(shuō),ChatGPT相比過(guò)去的機(jī)器人最大的不同在于記憶能力。通過(guò)在人類(lèi)環(huán)境中不斷進(jìn)行強(qiáng)化訓(xùn)練,ChatGPT可以靈活記憶與人溝通的對(duì)話信息,并實(shí)現(xiàn)連續(xù)對(duì)話。相比過(guò)去的Siri或者傳統(tǒng)搜索引擎,ChatGPT能夠從人類(lèi)反饋中不斷實(shí)現(xiàn)強(qiáng)化學(xué)習(xí),這直接改變了經(jīng)濟(jì)社會(huì)中人類(lèi)直接獲取信息和輸出內(nèi)容的方式。一旦獲取信息的中間成本被大大降低,數(shù)字經(jīng)濟(jì)中數(shù)據(jù)要素的使用效率將顯著提高,勞動(dòng)生產(chǎn)力也將得到進(jìn)一步的釋放。
此外,隨著ChatGPT的不斷迭代,AI自動(dòng)生成內(nèi)容將變得更加豐富。不論是在文字、音樂(lè)、繪畫(huà)、語(yǔ)音,還是圖像、視頻、游戲等領(lǐng)域,AI參與生成的可能性將大大提高。我們預(yù)料,圍繞ChatGPT等大語(yǔ)言模型,2022年后的未來(lái)10年大量的程序開(kāi)發(fā)將不斷涌現(xiàn)(表1),這或?qū)⒓铀俅笳Z(yǔ)言系統(tǒng)與當(dāng)前互聯(lián)網(wǎng)移動(dòng)設(shè)備、智能相機(jī)、語(yǔ)音識(shí)別系統(tǒng)進(jìn)行深度融合,從而深度改變當(dāng)前全社會(huì)的消費(fèi)模式和消費(fèi)行為。
宏觀層面:人工智能技術(shù)對(duì)現(xiàn)實(shí)經(jīng)濟(jì)增長(zhǎng)影響仍存在滯后,未來(lái)AI技術(shù)將加劇經(jīng)濟(jì)增長(zhǎng)的不規(guī)則性
根據(jù)諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)得主保羅·羅默(Paul Romer)的觀點(diǎn),當(dāng)前全球經(jīng)濟(jì)增長(zhǎng)低迷、勞動(dòng)生產(chǎn)率長(zhǎng)期停滯的主要原因是我們還沒(méi)有深刻了解如何充分實(shí)現(xiàn)和轉(zhuǎn)化數(shù)字經(jīng)濟(jì)利益在經(jīng)濟(jì)進(jìn)步中的貢獻(xiàn)。從問(wèn)題的根源說(shuō)起,當(dāng)前經(jīng)濟(jì)學(xué)家對(duì)于經(jīng)濟(jì)長(zhǎng)期停滯有多種解釋?zhuān)ǖ托У纳虡I(yè)投資、人口老齡化、技術(shù)創(chuàng)新普遍下滑等。但羅默指出,技術(shù)創(chuàng)新普遍下滑的說(shuō)法可能是不嚴(yán)謹(jǐn)?shù)?。進(jìn)入信息時(shí)代,圍繞數(shù)據(jù)要素的技術(shù)創(chuàng)新迭代相比傳統(tǒng)技術(shù)創(chuàng)新迭代的路徑與方向正在發(fā)生變化。以人工智能、大數(shù)據(jù)、區(qū)塊鏈為代表的新一代信息技術(shù)與傳統(tǒng)全要素生產(chǎn)率和經(jīng)濟(jì)增長(zhǎng)之間存在影響滯后性。
斯坦福大學(xué)經(jīng)濟(jì)學(xué)家保羅·大衛(wèi)(Paul David)進(jìn)一步將這種滯后描述為“生產(chǎn)力悖論”,他發(fā)現(xiàn)現(xiàn)代計(jì)算機(jī)革命對(duì)生產(chǎn)力水平的顯著提高可能比20世紀(jì)電力對(duì)生產(chǎn)力的推動(dòng)需要更多的時(shí)間?;诂F(xiàn)有的文獻(xiàn),AI技術(shù)與生產(chǎn)率之間存在顯著的“擴(kuò)散滯后”。這是因?yàn)槿斯ぶ悄艿陌l(fā)展依托于對(duì)數(shù)據(jù)的訓(xùn)練,而當(dāng)前AI技術(shù)對(duì)數(shù)據(jù)的收集、處理和訓(xùn)練都需要較長(zhǎng)的時(shí)間。以ChatGPT為例,相比Web1.0和Web2.0單向內(nèi)容輸出,盡管ChatGPT具備了雙向輸出和互動(dòng)的能力,然而ChatGPT從獲取數(shù)據(jù)到訓(xùn)練數(shù)據(jù)仍需要較長(zhǎng)的周期。當(dāng)前ChatGPT的數(shù)據(jù)更新為2021年,這意味著ChatGPT并不知道2022年以后發(fā)生的事情。實(shí)時(shí)數(shù)據(jù)無(wú)法被動(dòng)態(tài)更新,使得ChatGPT等基于神經(jīng)網(wǎng)絡(luò)模型的AI技術(shù)很難滿足商業(yè)價(jià)值創(chuàng)造所需的即時(shí)性。
此外,AI技術(shù)幾乎每一次迭代都需要外部基礎(chǔ)設(shè)施作出相應(yīng)升級(jí)改造,但外部相關(guān)基建和硬件設(shè)施往往難以在短期內(nèi)有效支持AI相關(guān)技術(shù)較高的配套訴求。比如基于區(qū)塊鏈技術(shù)的智能合約可以幫助企業(yè)間實(shí)現(xiàn)更加快速、安全、便捷的合作協(xié)議,但區(qū)塊鏈技術(shù)的全面落地實(shí)際需要基于Web3.0網(wǎng)絡(luò)搭建,而Web3.0的建設(shè)則需要實(shí)現(xiàn)去信任的交互協(xié)議平臺(tái)、分布式存儲(chǔ)和隱私計(jì)算三大底層基礎(chǔ)設(shè)施支持,這也是為什么人們?cè)诂F(xiàn)實(shí)活動(dòng)中很難深切感覺(jué)到AI相關(guān)技術(shù)對(duì)傳統(tǒng)的生活方式產(chǎn)生了直接性的沖擊。然而,隨著人工智能通用性和對(duì)目標(biāo)理解的不確定性不斷強(qiáng)化,AI技術(shù)創(chuàng)新對(duì)商業(yè)價(jià)值的釋放將變得更加廣泛和不可預(yù)測(cè),這意味著未來(lái)技術(shù)創(chuàng)新對(duì)經(jīng)濟(jì)增長(zhǎng)造成的不連續(xù)變化將逐步成為常態(tài)。
歷史層面:ChatGPT僅僅是AI發(fā)展過(guò)程中的一條分支,不宜過(guò)分樂(lè)觀
ChatGPT在人工智能領(lǐng)域中主要構(gòu)建于大語(yǔ)言歸納模型。大語(yǔ)言模型主要是利用自然語(yǔ)言和神經(jīng)網(wǎng)絡(luò)模型對(duì)人類(lèi)生產(chǎn)的語(yǔ)言類(lèi)數(shù)據(jù)進(jìn)行訓(xùn)練,并結(jié)合強(qiáng)化學(xué)習(xí)不斷強(qiáng)化AI對(duì)人類(lèi)語(yǔ)言的理解能力。從反饋機(jī)制來(lái)看,ChatGPT的智能回應(yīng)是基于龐大數(shù)據(jù)量上的梯度下降得到的。但值得強(qiáng)調(diào)的是,純粹的梯度下降并不等同于智能化。所謂AI的智能性,不僅僅是對(duì)知識(shí)的歸納處理,最重要的意義是AI學(xué)會(huì)進(jìn)行知識(shí)推理并具備認(rèn)知常識(shí)的能力。
過(guò)去5年,ChatGPT的通用性和泛化能力確實(shí)得到顯著提升,但在模型中我們實(shí)際并不知道該模型泛化能力是如何通過(guò)模型訓(xùn)練具體形成的,我們也很難明確通用性和泛化性的邊界在哪里。因此,如果僅僅將ChatGPT視為一種幫助人們實(shí)現(xiàn)目標(biāo)的工具,它確實(shí)能夠產(chǎn)生更多的商業(yè)價(jià)值。但如果將ChaGPT等大語(yǔ)言類(lèi)AI技術(shù)視為改變?nèi)祟?lèi)文明必由的途徑則有些言過(guò)其實(shí)。因?yàn)橹挥挟?dāng)AI真正實(shí)現(xiàn)知識(shí)推理,才能說(shuō)AI具備了真正的智能化。
另外需要注意,隨著AI技術(shù)的發(fā)展,人類(lèi)的確存在對(duì)AI失去控制的風(fēng)險(xiǎn)。無(wú)論是從運(yùn)籌學(xué)的最優(yōu)獎(jiǎng)勵(lì)機(jī)制、統(tǒng)計(jì)學(xué)的最小損失函數(shù),還是經(jīng)濟(jì)學(xué)的效用最大化,在現(xiàn)今所有標(biāo)準(zhǔn)模型下對(duì)機(jī)器人的指令幾乎都會(huì)導(dǎo)致AI失控。這是因?yàn)闃?biāo)準(zhǔn)模型下AI在實(shí)現(xiàn)目標(biāo)的過(guò)程中很可能會(huì)不惜一切代價(jià)實(shí)現(xiàn)目標(biāo),甚至包括脫離控制本身。因此在未來(lái)5~10年內(nèi),無(wú)論是大語(yǔ)言模型還是其他AI模型都會(huì)不斷納入新的技術(shù)以尋求AI對(duì)人類(lèi)偏好的進(jìn)一步認(rèn)知,這也反映了人機(jī)互動(dòng)將是不可避免的發(fā)展趨勢(shì)。也只有這樣,才能保證在AI擁有自我判斷能力和常識(shí)前,人類(lèi)可以足夠降低AI失控的風(fēng)險(xiǎn)。
回顧AI的發(fā)展史,當(dāng)前人們對(duì)人工智能的探索仍處于類(lèi)似工業(yè)文明爆發(fā)前期的“啟蒙時(shí)代”。確切來(lái)說(shuō),我們對(duì)于智能的實(shí)現(xiàn)是基于長(zhǎng)期實(shí)驗(yàn)和觀察累計(jì)的經(jīng)驗(yàn)歸納總結(jié),人類(lèi)要想實(shí)現(xiàn)真正的人工智能并構(gòu)建真正的智能系統(tǒng),根本上是解決如何用數(shù)學(xué)或其他語(yǔ)言去描述宇宙中包含的各種不規(guī)則性。如果我們忽略了數(shù)理邏輯以及知識(shí)推理對(duì)人工智能發(fā)展的真實(shí)意義,人類(lèi)很可能會(huì)再次陷入一場(chǎng)“自欺欺人”的騙局之中。
(文章來(lái)源:第一財(cái)經(jīng))
標(biāo)簽: